螺旋螺旋根据功的原理,在动力F作用下将螺杆旋转一周,F对螺旋做的功为F2πL 螺旋转一周,重物被举高一个螺距(即两螺纹间竖直距离),螺旋对重物做的功是Gh 依据功的原理得F=(h/2πL)/G 因为螺距h总比2πL小得多,若在螺旋把手上施加一个很小的力,就能将重物举起 螺旋因摩擦力的缘故,效率很低 即使如此,其力比G/F仍很高,距离比由2πL/h确定 螺旋的用途一般可分紧固、传力及传动三类 螺旋结构是自然界最普遍的一种形状,DNA以及许多其它在生物细胞中发现的微型结构都采用了这种构造 然而,为何大自然对这种结构如此偏爱呢 美国宾夕法尼亚州的物理学家认为,他们找到了这一问题的数学答案 他们的研究成果发表在近期的《科学》杂志上 对数螺旋对数螺旋“为何螺旋结构是现在这个样子 过去的回答是——由分子之间的引力决定的 但这只能回答螺旋结构是如何形成的,而不能回答为什么它们是那种形状 ”宾州大学的天文和物理学系教授兰德尔·卡缅指出,“从本质上来看,螺旋结构是在一个拥挤的空间,例如一个细胞里,聚成一个非常长的分子的较佳方式,譬如DNA ”在细胞的稠密环境中,长分子链经常采用规则的螺旋状构造 这不仅让信息能够紧密地结合其中,而且能够形成一个表面,允许其它微粒在一定的间隔处与它相结合 例如,DNA的双螺旋结构允许进行DNA转录和修复 DNA双螺旋结构DNA双螺旋结构为了显示空间对螺旋形成的重要性,卡缅建立了一个模型,把一个能随意变形、但不会断裂的管子浸入由硬的球体组成的混合物中,就好比是一个存在于十分拥挤的细胞空间中的一个分子 通过观测,他们发现对于这种短小易变形的管子而言,Ц形结构的形成所需的能量最小,空间也最少 而螺旋当中的Ц形结构,在几何学上最近似于在自然界的螺旋中找到的该种结构 “ 看来,分子中的螺旋结构是自然界能够最佳地使用手中材料的一个例子 DNA由于受到细胞内的空间局限而采用双螺旋结构,就像是由于公寓空间局限而采用螺旋梯的设计一样 ”卡缅指出 在圆柱体的侧表面上刻出螺旋形沟槽的机械 也可把螺旋看成是斜面绕在圆柱体上而构成,因此,螺旋应用了斜面原理 螺旋的特点是能把转动变成平动或者相反 在古代,人们就应用螺旋 阿基米德就发明了用螺旋从尼罗河中向上提水,就是用了著名的阿基米德螺旋(图1) 螺旋螺旋螺旋螺旋螺旋螺旋螺旋可用于传动和锁紧 实际使用的螺旋有方形、三角形、梯形、锯齿形等各种不同形状的螺纹(图2),各有不同用途,作为传动用的螺旋多为方形螺纹 从图3的螺旋和螺母中可以得出螺旋的机械效率:螺旋螺旋,式中W 为螺母所受的轴向力的值;h为螺旋的导程;M为螺母所受的力矩值;α为螺旋的导角;嗘为螺纹和螺母间的摩擦角 如利用螺旋来锁紧物体则要求α≤0, 这称为螺旋自锁条件 常用螺旋千斤顶(图4)来推举重物,这就要求螺旋满足自锁条件 螺旋螺旋螺旋在机器和结构中得到广泛的应用,机床的丝杠用螺旋来传动,机器和结构上的各种螺钉和螺栓则用螺旋来锁紧 此外,螺旋送料机、螺旋推进器等也是螺旋在其他方面的应用